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Toy Model
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Toy Model

We assume that

• two default times are given: τi, i = 1, 2
• Hi

t = 11τi≤t are the default processes,
• Hi is the natural filtration of Hi,
• H is the filtration

Ht = H1
t ∨H2

t
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Toy Model

We introduce the joint survival process G(u, v): for every u, v ∈ R+,

G(u, v) = P(τ1 > u, τ2 > v)

We write

∂1G(u, v) =
∂G

∂u
(u, v), ∂12G(u, v) =

∂2G

∂u∂v
(u, v).

We assume that the joint density f(u, v) = ∂12G(u, v) exists. In other words, we
postulate that G(u, v) can be represented as follows

G(u, v) =
∫ ∞

u

( ∫ ∞

v

f(x, y) dy
)

dx.
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Toy Model

We compute conditional expectation in the filtration H = H1 ∨H2 from the Key
lemma with F = H2, G = H1 ∨H2, X = 1 and τ = τ1 :
For t < T

E(X11T<τ |Gt) = 11{t<τ}
E(X11{τ>T}|Ft)
E(11{τ>t}|Ft)

P(T < τ1|H1
t ∨H2

t ) = 11{t<τ1}
P(T < τ1|H2

t )
P(t < τ1|H2

t )

= 11t<τ1

(
11t<τ2

P(T < τ1, t < τ2)
P(t < τ1, t < τ2)

+ 11τ2≤t
P(T < τ1|τ2)
P(t < τ1|τ2)

)

= 11t<τ1

(
11t<τ2

G(T, t)
G(t, t)

+ 11τ2≤t
P(T < τ1|τ2)
P(t < τ1|τ2)

)
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Toy Model

We compute conditional expectation in the filtration H = H1 ∨H2 from the Key
lemma with F = H2, G = H1 ∨H2, X = 1 and τ = τ1 :
For t < T

E(X11T<τ |Gt) = 11{τ>t}
E(X11{τ>T}|Ft)
E(11{τ>t}|Ft)

P(T < τ1|H1
t ∨H2

t ) = 11t<τ1

P(T < τ1|H2
t )

P(t < τ1|H2
t )

A second application of the key lemma leads to

= 11{t<τ1}

(
11{t<τ2}

P(T < τ1, t < τ2)
P(t < τ1, t < τ2)

+ 11{τ2≤t=

P(T < τ1|τ2)
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Toy Model

• The computation of P(T < τ1|τ2) can be done as follows:

P(T < τ1|τ2 = v) =
P(T < τ1, τ2 ∈ dv)

P(τ2 ∈ dv)
=

∂2G(T, v)
∂2G(0, v)

hence, on the set τ2 < T ,

P(T < τ1|τ2) =
∂2G(T, τ2)
∂2G(0, τ2)
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Toy Model

Value of credit derivatives

We introduce different credit derivatives

A defaultable zero-coupon related to the default times τi delivers 1 monetary
unit if τi is greater that T : Di(t, T ) = E(11{T<τi}|H1

t ∨H2
t )

We obtain

D1(t, T ) = 11{τ1>t}

(
11{τ2≤t}

∂2G(T, τ2)
∂2G(t, τ2)

+ 11{τ2>t}
G(T, t)
G(t, t)

)
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Toy Model

Some easy computation leads to

E(h(τ1, τ2)|Ht) = It(1, 1)h(τ1, τ2) + It(1, 0)Ψ1,0(τ1) + It(0, 1)Ψ0,1(τ2) + It(0, 0)Ψ0,0

where

Ψ1,0(u) = − 1
∂1G(u, t)

∫ ∞

t

h(u, v)∂1G(u, dv)

Ψ0,1(v) = − 1
∂2G(t, v)

∫ ∞

t

h(u, v)∂2G(du, v)

Ψ0,0 =
1

G(t, t)

∫ ∞

t

∫ ∞

t

h(u, v)G(du, dv)

It(1, 1) = 11{τ1≤t,τ2≤t} , It(0, 0) = 11{τ1>t,τ2>t}

It(1, 0) = 11{τ1≤t,τ2>t} , It(0, 1) = 11{τ1>t,τ2≤t}
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Toy Model

Intensities

The process

H1
t −

∫ t∧τ1∧τ2

0

λ̃1
u du−

∫ t∧τ1

t∧τ1∧τ2

λ1|2(u, τ2) du,

is a G-martingale where

λ̃1
t = −∂1G(t, t)

G(t, t)
, λ1|2(t, s) = − f(t, s)

∂2G(t, s)

Note that

λ̃1
t = lim

h→0

1
h

P(t < τ1 ≤ t + h, τ2 > t)
P(τ1 > t, τ2 > t)

= − ∂1G(t, t)
G(t, t)

λ1|2(t, s) = lim
h→0

1
h
P(τ1 ∈ [t, t + h]|τ2) = − f(t, τ2)

∂2G(t, τ2)
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Toy Model

From

P(τ1 > s|H2
t ) = (1−H2

t )
G(s, t)
G(0, t)

+ H2
t

∂2G(s, τ2)
∂2G(0, τ2)

we deduce that
Gt = P(τ1 > t|H2

t )

P(τ1 > t|H2
t ) admits a Doob-Meyer decomposition as

dGt =
(

G(t, t)
G(0, t)

− ∂2G(t, t)
∂2G(0, t)

)
dM2

t +
(

H2
t

∂1,2G(t, τ2)
∂2G(0, τ2)

− (1−H2
t )

∂1G(t, t)
G(0, t)

)
dt

where M2
t = H2

t −
∫ t∧τ2

0
∂2G(0,s)
G(0,s) ds is a H2-martingale.
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Toy Model

Valuation of a Defaultable claim

Let us now examine the valuation of a simple defaultable claim which delivers δ(τ1)
at time τ1, if τ1 < T , where δ is a deterministic function. We assume zero interest
rate and that the pricing is done under P.

The value S of this claim, computed in the filtration H, i.e., taking care on the
information on the second default contained in that filtration, is

St = 11{t<τ1}E (δ(τ1)11τ1≤T |Ht)
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Toy Model

Let us denote by τ = τ1 ∧ τ2 the moment of the first default. Then,
11{t<τ}St = 11{t<τ}S̃t, where

S̃t =
1

G(t, t)
E(δ(τ1)11τ1≤T )

S̃t =
1

G(t, t)

(
−

∫ T

t

δ(u)∂1G(u, t) du

)

where G(t, t) = P(τ > t).
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Toy Model

Hence the dynamics of the pre-default price S̃t are

dS̃t =
((

λ̃1(t) + λ̃2(t)
)
S̃t − λ̃1(t)δ(t)− λ̃2(t)S

1|2
t (t)

)
dt,

where for i = 1, 2 the function λ̃i(t) is the (deterministic) pre-default intensity of τi

and S
1|2
t (t) is given by the expression

S
1|2
t (t) =

1
∂2G(t, t)

(
−

∫ T

t

δ(u)f(u, t) du

)
.

In the financial interpretation, S
1|2
t (t) is the price at time t of the claim on the first

credit name, under the assumption that the default τ2 occurs at time t and the first
name has not yet defaulted (recall that simultaneous defaults are excluded).
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Toy Model

Let us now consider the event {τ2 ≤ t < τ1}. The price of the claim equals

S
1|2
t (τ2) =

1
∂2G(t, τ2)

(
−

∫ T

t

δ(u)f(u, τ2) du

)
.

Consequently, on the event {τ2 ≤ t < τ1} we obtain

dSt =
(
λ1|2(t, τ2) (St − δ(t))

)
dt
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Toy Model

It follows that

dSt = −(1−H1
t )(1−H2

t )δ(t)λ̃1(t))dt− (1−H1
t )H2

t δ(t)λ̃1|2
t dt

−St−dM1
t + (1−H1

t )(S1|2
t (t)− St−)dM2

t

= (δ(t)− St−)dM1
t + (1−H1

t )(S1|2
t (t)− St−)dM2

t − δ(t)dH1
t
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Toy Model
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Toy Model

Example: Jarrow and Yu’s Model

Let τi = inf{t : Λi(t) ≥ Θi}, i = 1, 2 where Λi(t) =
∫ t

0
λi(s)ds and Θi are

independent random variables with exponential law of parameter 1. Jarrow and Yu
study the case where λ1 is a constant and

λ2(t) = λ211{t<τ1} + α211{τ1≤t} .

Assume for simplicity that r = 0 and compute the value of a defaultable
zero-coupon with default time τi, with a rebate δi:

Di(t, T ) = E(11{τi>T} + δi11{τi<T}|Ht), for Ht = H1
t ∨H2

t .
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Toy Model

After some computation

D1(t, T ) = δ1 + 11{τ1>t}(1− δ1)e−λ1(T−t)

D2(t, T ) = δ2 + (1− δ2)11{τ2>t}
(
11{τ1≤t}e−α2(T−t)

+11{τ1>t}
1

λ1 + λ2 − α2
(λ1e

−α2(T−t) + (λ2 − α2)e−(λ1+λ2)(T−t))
)
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Copula-Based Approaches

Copula-Based Approaches
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Copula-Based Approaches

The concept of a copula function allows to produce various multidimensional
probability distributions with prespecified univariate marginal laws.
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Copula-Based Approaches

The concept of a copula function allows to produce various multidimensional
probability distributions with prespecified univariate marginal laws.

A function C : [0, 1]n → [0, 1] is called a copula if the following conditions are
satisfied:
(i) C(1, . . . , 1, vi, 1, . . . , 1) = vi for any i and any vi ∈ [0, 1],
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Copula-Based Approaches
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Copula-Based Approaches

The concept of a copula function allows to produce various multidimensional
probability distributions with prespecified univariate marginal laws.

A function C : [0, 1]n → [0, 1] is called a copula if the following conditions are
satisfied:
(i) C(1, . . . , 1, vi, 1, . . . , 1) = vi for any i and any vi ∈ [0, 1],
(ii) C(u1, . . . , un) is increasing with respect to each component ui

(iii) For any a, b ∈ [0, 1]n with a ≤ b (i.e., ai ≤ bi, ∀i)
2∑

i1=1

· · ·
2∑

in=1

(−1)i1+···+inC(u1,i1 , . . . , un,in) ≥ 0 ,

where uj,1 = aj , uj,2 = bj .
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Copula-Based Approaches

Let us give few examples of copulas:

• Product copula: Π(u1, . . . , un) = Πn
i=1ui,

• Gumbel copula: for θ ∈ [1,∞) we set

C(u1, . . . , un) = exp


−

[
n∑

i=1

(− ln ui)θ

]1/θ

 ,

• Gaussian copula:

C(u1, . . . , un) = Nn
Σ

(
N−1(u1), . . . , N−1(un)

)
,

where Nn
Σ is the c.d.f for the n-variate central normal distribution with the

linear correlation matrix Σ, and N−1 is the inverse of the c.d.f. for the
univariate standard normal distribution.
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Copula-Based Approaches

Sklar Theorem:

For any cumulative distribution function F on Rn there exists a copula
function C such that

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn))

where Fi is the ith marginal cumulative distribution function. If, in
addition, F is continuous then C is unique.
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Copula-Based Approaches

Direct Application

Let Fi be the probability distribution for τi. A copula function C is chosen in order
to introduce a dependence structure of the random vector (τ1, τ2, . . . , τn). The joint
distribution of the random vector (τ1, τ2, . . . , τn) is derived by

P{τi ≤ ti, i = 1, 2, . . . , n} = C
(
F1(t1), . . . , Fn(tn)

)
.
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Copula-Based Approaches

Indirect Application

Assume that the cumulative distribution function of (ξ1, . . . , ξn) is given by an
n-dimensional copula C, and that the univariate marginal laws are uniform on [0, 1].
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Copula-Based Approaches

Indirect Application

Assume that the cumulative distribution function of (ξ1, . . . , ξn) is given by an
n-dimensional copula C, and that the univariate marginal laws are uniform on
[0, 1]. We postulate that (ξ1, . . . , ξn) are independent of F, and we set

τi = inf { t : Λi
t ≥ − ln ξi }.
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Copula-Based Approaches

Then:
• The case of default times conditionally independent with respect to F

corresponds to the choice of the product copula Π. In this case, for
t1, . . . , tn ≤ T we have

P{τ1 > t1, . . . , τn > tn | FT } = Π(Z1
t1 , . . . , Z

n
tn

),

where we set Zi
t = e−Λi

t .

• In general, for t1, . . . , tn ≤ T we obtain

P{τ1 > t1, . . . , τn > tn | FT } = C(Z1
t1 , . . . , Z

n
tn

),

where C is the copula used in the construction of ξ1, . . . , ξn.
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Copula-Based Approaches

An example

This example describes the use of one-factor Gaussian copula (Bank of
International Settlements (BIS) standard).

Let qi be a decreasing function taking values in [0, 1] with qi(0) = 1.

τi = inf{t : qi(t) < Ui}

Then, qi(t) = P(τi > t) = 1− pi(t).

Correlation specification of the thresholds Ui: Let Y1, · · · , Yn and Y be independent
random variables and Xi = ρiY +

√
1− ρ2

i Yi.

The default thresholds are defined by Ui = 1− Fi(Xi) where Fi is the cumulative
(continuous) distribution function of Xi. Then

τi = inf{t : ρiY +
√

1− ρ2
i Yi ≤ F−1

i (1− qi(t))} .
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Copula-Based Approaches

Conditioned on the common factor Y ,

pi(t|Y ) = FY
i

(
F−1

i (pi(t))− ρiY√
1− ρ2

i

)

where FY
i is the cumulative distribution function of Yi.
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Copula-Based Approaches

Let us consider the particular case where

Xi = ρiY +
√

1− ρ2
i Yi,

where Y, Yi, i = 1, 2, . . . , n, are independent standard Gaussian variables. In that
case, Xi is also a standard Gaussian law and

pi(t|Y ) = N
(
N−1(pi(t))− ρiY√

1− ρ2
i

)

and

P(τi ≤ ti, ∀i ≤ n) =
∫ ∏

i

N
(
N−1(Fi(ti))− ρiy√

1− ρ2
i

)
f(y)dy .

where f is the density of Y
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Copula-Based Approaches

Loss

The cumulative loss on the underlying portfolio is Lt =
∑n

i=1 Ni(1−Ri)11τi≤t where
Ni is the nominal value of each firm and Ri is the (constant) recovery rate. The
first defaults only affect the equity tranche until the cumulative loss has arrived the
total nominal amount of the equity tranche and the loss on the tranche is given by

LE
t = Lt110,nE (Lt) + nE11nE ,∞(Lt) = Lt − (Lt − nE)+

Conditional on the common factor Y , we can rewrite

LT =
∑

Ni(1−Ri)11Yi≤ ( F−1
i (pi(T ))−ρiY ) / (1−ρ2

i )

Hence, the conditional total loss LT w.r.t. the factor Y can be written as the sum
of independent Bernoulli random variables, each with probability pi(T |Y )

37



Copula-Based Approaches

Survival Intensities

For arbitrary s ≤ t on the set {τ1 > s, . . . , τn > s} = {τ(1) > s} we have

P{τi > t | Gs} = EP
(

C(Z1
s , . . . , Zi

t , . . . , Z
n
s )

C(Z1
s , . . . , Zn

s )

∣∣∣Fs

)
.
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Copula-Based Approaches

Survival Intensities

For arbitrary s ≤ t on the set {τ1 > s, . . . , τn > s} = {τ(1) > s} we have

P{τi > t | Gs} = EP
(

C(Z1
s , . . . , Zi

t , . . . , Z
n
s )

C(Z1
s , . . . , Zn

s )

∣∣∣Fs

)
.

Proof: The proof is straightforward, and follows from the key lemma

P{τi > t | Gs}11{τ(1)>s} = 11{τ(1)>s}
P(τ1 > s, . . . , τi > t, . . . , τn > s | Fs)
P(τ1 > s, . . . , τi > s, . . . , τn > s | Fs)

4
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Copula-Based Approaches

Consequently, assuming that the derivatives γi
t = dΛi

t

dt exist, the i-th intensity of
survival equals, on the set {τ1 > t, . . . , τn > t},

λi
t = γi

t Zi
t

∂
∂vi

C(Z1
t , . . . , Zn

t )
C(Z1

t , . . . , Zn
t )

= γi
t Zi

t

∂

∂vi
ln C(Z1

t , . . . , Zn
t ),

where λi
t is understood as the limit:

λi
t = lim

h↓0
h−1Q{t < τi ≤ t + h | Ft, τ1 > t, . . . , τn > t}.

40



Copula-Based Approaches

It appears that, in general, the i-th intensity of survival jumps at time t, if the j-th
entity defaults at time t for some j 6= i. In fact, it holds that

λi,j
t = γi

t Zi
t

∂2

∂vi∂vj
C(Z1

t , . . . , Zn
t )

∂
∂vj

C(Z1
t , . . . , Zn

t )
,

where
λi,j

t = lim
h↓0

h−1Q{t < τi ≤ t + h | Ft, τk > t, k 6= j, τj = t}.
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Copula-Based Approaches

Schönbucher and Schubert (2001) also examine the intensities of survival after the
default times of some entities. Let us fix s, and let ti ≤ s for i = 1, 2, . . . , k < n,
and Ti ≥ s for i = k + 1, k + 2, . . . , n. Then,

Q
{
τi > Ti, i = k + 1, k + 2, . . . , n | Fs, τj = tj , j = 1, 2, . . . , k,

τi > s, i = k + 1, k + 2, . . . , n
}

=
EQ

(
∂k

∂v1...∂vk
C(Z1

t1 , . . . , Z
k
tk

, Zk+1
Tk+1

, . . . , Zn
Tn

)
∣∣∣Fs

)

∂k

∂v1...∂vk
C(Z1

t1 , . . . , Z
k
tk

, Zk+1
s , . . . , Zn

s )
.

42



Density models

Density models
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Density models

We introduce the conditional joint survival process Gt(u, v)

Gt(u, v) = Q(τ1 > u, τ2 > v | Ft).

We write

∂1Gt(u, v) =
∂

∂u
Gt(u, v), ∂12Gt(u, v) =

∂2

∂u∂v
Gt(u, v)

so that

Gt(u, v) =
∫∞

u
dx

∫∞
v

gt(x, y) dy

where (gt(x, y), t ≥ 0) is a family of F-predictable processes (in fact
(F,Q)-martingales) and, if F is a Brownian filtration

Gt(u, v) = G0(u, v) +
∫ t

0

σs(u, v)dWs
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Density models

An example (Fermanian, Crépey)

Define τi = hi(
∫∞
0

f(s)dBi
s) where Bi are BM, with the same correlation

coefficient, f is a deterministic function and hi are positive functions, increasing.
Then, the conditional joint law of (τi, i ≤) correspond to a Gaussian copula
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Density models

Construction

To produce such modeling, one can work as follows

• Start with the case where τ = (τ1, . . . , τn) is independent from F and note η the
law of τ . Work, on the canonical product space, under P0 = P× η

• Define the counting process Nt =
∑

n 11τn≤t and its natural filtration (Nt, t ≥ 0).
Compute, in that "toy model" the conditional law of τ given Nt

• Do a change of probability dQ = βT dP0 on the product space. Use Bayes formula
to compute various conditional expectation

This construction extends easily to the case where some information on marks
associated with τ are given.
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Density models
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Density models

Construction
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associated with τ are given.
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Density models

Construction

To produce such modeling, one can work as follows

• Start with the case where τ = (τ1, . . . , τn) is independent from F and note η the
law of τ . Work, on the canonical product space, under P0 = P× η

• Define the counting process Nt =
∑

n 11τn≤t and its natural filtration (Nt, t ≥ 0).
Compute, in that "toy model" the conditional law of τ given Nt

• Do a change of probability dQ = βT dP0 on the product space. Use Bayes formula
to compute various conditional expectation

This construction extends easily to the case where some information on marks
associated with τ are given.
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Density models

(T : x) bonds

Filipovic et al. consider the loss process L, defined as a increasing marked point
process µ, valued in [0, 1] with an absolutely continuous compensator ν(t, dx)dt.
They introduce (T : x) bonds, with price P (t, x, T ) which have a payoff at time T

equal to 11LT≤x, and the (T : x) forward rate f so that

P (t, x, T ) = 11Lt≤x exp(−
∫ T

t

f(t, x, u)du)

They prove that the compensator of 11Lt≤x is
∫ t

0
11Ls≤xλ(s, x)ds, where

λ(t, x) = ν(t, (x− Lt, 1] ∩ [0, 1]). Assuming that

dtf(t, x, T ) = a(t, x, T )dt + b(t, x, T )dWt +
∫

c(t, x, T ; y)µ(dt, dy)

they show that the no-arbitrage condition is
∫ T

t

a(t, x, u)du =
1
2
(
∫ T

t

b(t, x, u)du)2 +
∫

(e−
∫ T

t
c(t,x,u;y)du−1 − 1)11Lt+y≤xν(t, dy)

rt + λ(t, x) = f(t, x, t)
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Markov Chain based models

Markov Chain based models
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Markov Chain based models

Let H = (H1,H2) denote the pair of the default indicator processes, so Hi
t = 11τi≤t.

Given a factor process X = (X1, X2), we consider a Markovian model of the pair
(X, H), with generator given by, for u = u(t, x, e) with
t ∈ R+, x = (x1, x2) ∈ R2, e = (e1, e2) ∈ {0, 1}2:

Au(t, x, e) = ∂tu(t, x, e)

+
∑

1≤i≤2

`i(t, xi)
(
u(t, x, ei)− u(t, x, e)

)
+ `3(t) (u(t, x, 1, 1)− u(t, x, e))

+
∑

1≤i≤2

(
bi(t, xi)∂xi

u(t, x, e)+
1
2
σ2

i (t, xi)∂2
x2

i
u(t, x, e)

)
,

where, for i = 1, 2:
• ei is the vector obtained from e, by replacing the component i by number one,
• bi and σ2

i denote factor drift and variance functions, and `i is an individual
default intensity function, and `3(t) stands for the joint defaults intensity function.
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Markov Chain based models

The F-intensity-matrix function of H is thus given by the following 4× 4 matrix
A(t, x), where the first to fourth rows (or columns) correspond to the four possible
states (0, 0), (1, 0), (0, 1) and (1, 1) of Ht :

A(t, x) =




−`(t, x) `1(t, x1) `2(t, x2) `3(t)

0 −q2(t, x2) 0 q2(t, x2)

0 0 −q1(t, x1) q1(t, x1)

0 0 0 0




,

with, for every i = 1, 2,

qi(t, xi) = `i(t, xi) + `3(t)

and `(t, x) = `1(t, x1) + `2(t, x2) + `3(t).
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Markov Chain based models

For every i = 1, 2, the process (Xi,Hi) is an F-Markov process with generator
given by, for u = u(t, x, e) with t ∈ R+, x ∈ R, e ∈ {0, 1}:

Aiu(t, x, e) =∂tu(t, x, e) + bi(t, x)∂xu(t, x, e) +
1
2
σ2

i (t, x)∂2
x2u(t, x, e)

+ qi(t, x) (u(t, x, 1)− ui(t, x, e)) .

The F-intensity matrix function of Hi is thus given by

Ai(t, x) =


 −qi(t, x) qi(t, x)

0 0




In other words, the process M i defined by, for i = 1, 2,

M i
t = Hi

t −
∫ t

0

(1−Hi
s)qi(s,Xi

s)ds ,

is an F-martingale.
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Markov Chain based models

One has, for every t ≥ 0,

P(τi > t) = E exp
(−

∫ t

0

qi(u,Xi
u)du

)
, P(τ1∧τ2 > t) = E exp

(−
∫ t

0

`(u,Xu)du
)

.
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Markov Chain based models

Particular case

We model the pair H = (H1, H2) as an inhomogeneous Markov chain with state
space E = {(0, 0), (1, 0), (0, 1), (1, 1)}, and generator matrix at time t given by the
following matrix A(t), where the first to fourth rows (or columns) correspond to the
four possible states (0, 0), (1, 0), (0, 1) and (1, 1) of Ht :

A(t) =




−(`1(t) + `2(t) + `3(t)) `1(t) `2(t) `3(t)

0 −(`2(t) + `3(t)) 0 `2(t) + `3(t)

0 0 −(`1(t) + `3(t)) `1(t) + `3(t)

0 0 0 0




.

where `’s are deterministic functions of time.
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Markov Chain based models

Let us further introduce the processes H{1}, H{2} and H{1,2} standing for the
indicator processes of a default of the firm alone, of the counterpart alone, and of a
simultaneous default of the firm and the counterpart, respectively.

H
{1}
t = 11τ1≤t,τ1 6=τ2 , H

{2}
t = 11τ2≤t,τ1 6=τ2 , H

{1,2}
t = 11τ1=τ2≤t .
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Markov Chain based models

The H-intensity of Hι is of the form qι(t,Ht) = qι(t,H1
t ,H2

t ) for a suitable function
qι(t, h):

q{1}(t, h) = 11h1=0 (11h2=0`1(t) + 11h2=1(`1 + `3)(t))

q{2}(t, h) = 11h2=0 (11h1=0`2(t) + 11e1=1(`2 + `3)(t))

q{1,2}(t, h) = 11h=(0,0)`3(t) .

The processes M i defined by, for i = 1, 2,

M i
t = Hi

t −
∫ t

0

(1−Hi
s)(`i + `3)(s)ds ,

are H-martingales.

The processes H1 and H2 are H-Markov processes

One has,

P(τ1 > s, τ2 > t) = exp
(
−

∫ s

0

`1(u)du−
∫ t

0

`2(u)du−
∫ s∨t

0

`3(u)du

)
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Self-exciting Models, Multiphase models

Self-exciting Models, Multiphase models
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Self-exciting Models, Multiphase models

Self-exciting Models

A basic example is a Hawkes process, which is specified by a positive functions λk.
The intensity of the counting process Nt =

∑
11τk≤t is

λt = λ0(t) +
∑

k,τk<t λk(t− τk)

In this specification, the intensity of N is updated with default information along
the path. The construction of N can be done using change of time procedure.
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Self-exciting Models, Multiphase models

Generalisation:

Lt =
∑

11τk<t

τk = inf{t :
∫ t

0

λk
s ≥ Θk}

dλk
t = −αk(λk

t − λ̂k)dt + σk

√
λk

t dWt + bkdLt + ckλk
t dXt
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Self-exciting Models, Multiphase models

Multiphase models

Consider a continuous-time Markov chain Xt is on a state space E = 1, 2, . . . , m,∆
where the states 1, 2, . . . , m, are transient and ∆ is an absorbing state. The
generator Λ of the chain Xt is given by

Λ =


 A −Ae

0 0




where e is a column vector in Rm where all entries equals 1.

Let Γ1 and Γ2 be two stochastically closed subsets of E, which means that once Xt

enters Γi it never leaves Γi. We assume that Γ1 ∩ Γ2 is reduced to ∆.

Then, the matrix A can be formulated as an upper diagonal matrix, i.e. the
elements below the diagonal is zero.
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Self-exciting Models, Multiphase models

Let τi be defined as

τi = inf{t > 0 : Xt ∈ Γi}, i = 1, 2.

and gi be a m×m diagonal matrices where (gi)k,k = 11{k∈Γc
i}, that is, the k-th

diagonal of gi for k = 1, 2, . . . , m equals 1 if k ∈ Γc
i and zero otherwise.

For example, in the case of the two dimensional states (X1, X2) with four states
(0, 0), (0, 1), (1, 0), (1, 1) where 1 is the cemetery, we have m = 3, and

g1 :=




1 0 0

0 1 0

0 0 0




g2 :=




1 0 0

0 0 0

0 0 1




.

Then, for an initial distribution given by α,

P(τ1 > t1, τ2 > t2) =





αeAt2g2e
A(t1−t2)g1e if 0 ≤ t2 ≤ t1,

αeAt1g1e
A(t2−t1)g2e if 0 ≤ t1 ≤ t2
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Self-exciting Models, Multiphase models

The absolute continuous component of the joint law has density f(t1, t2) given by

f(t1, t2) =





αeAt2 [A, g2] eA(t1−t2)Ag1e if 0 ≤ t2 ≤ t1,

αeAt1 [A, g1] eA(t2−t1)Ag2e if 0 ≤ t1 ≤ t2

where [A,B] = AB −BA.

Furthermore

P(τ1 = τ2 > t) = αeAtA−1 (Ag1g2 − [A, g1] g2 − [A, g2] g1) e.
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Partial Observation, Filtering Problems

Partial Observation, Filtering Problems
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Partial Observation, Filtering Problems

Since the seminal paper of Duffie and Lando, a partial observation methodology
allows to built a bridge between structural approach and reduced form approach.

The first application is to assume that

τ = inf{t : Xt ≤ 0}

where X is some driving process with natural filtration FX , and the observation F
is a filtration smaller than FX . For example, one observes the process X only at
discrete times (ti), which may be random. One can also assume that one observes
the process with some noise.
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Partial Observation, Filtering Problems

Filtering problems in credit risk were introduced by Nakagawa.

Other models assume that the default indicators are on the form

dHi
t = (1−Hi

t−)
∫

κi(t,Xt−, u)N (du, dt)

where κ takes values in {0, 1} and N is a Poisson random measure, and X is a
jump-diffusion (or a Markov Chain)

The filtration of observation is then the one given by Y and some "observation
process" Z following

dZt = a(t,Xt)dt + dBt
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